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Why lattices?

RSA uses large finite (abelian) groups

G = (Z/nZ)* (2048 bits, 4096 bits,...)

To speed things up:

« Elliptic curve crypto uses smaller groups, whose operations are
more expensive.

« Lattice cryptography uses larger groups, but whose operations
are much cheaper.



Lattice Cryptography

Lattice-based cryptography is the use of conjectured hard problems on point lattices

in R™ as the foundation for secure cryptographic systems.

Features:

* Apparent resistance to quantum attacks (in contrast with most number-theoretic
cryptography) [Sho97]

+ High asymptotic efficiency and parallelism

» Security under worst-case intractability assumptions [Ajt96]

« Versatile and powerful cryptographic objects (FHE [Gen09], ABE [BGG+14], Code
obfuscation [GGH+13]..)



Main Milestones in Lattice Cryptography

1982: First use of lattices in cryptanalysis (LLL): knapsack cryptosystems
1996: First crypto schemes based on hard lattice problems: NTRU, Ajtai-Dwork, GGH,...
2009: Fully-Homomorphic Encryption on Lattices

2012: Leveled cryptosystems



What is a Lattice?

A lattice is the set of all integer linear combinations of
(linearly independent) basis vectors
B ={b,,b,,..,b,} c R"

n
L=Zbi-Z:{Bx:x€Z"}

i=1

The same lattice has many different bases:
n
L= z C;- Z
i=1

Lattice: discrete additive subgroup of R"




Simple Example (Preliminary Homomorphic
Encryption)

Good bases and bad bases: GGH (Goldreich,
Goldwasser, Halevi) family
Two lattice bases

+ "“Good" basis (B, private key) Gap

«  “Bad"” basis (H, public key, Hermite Normal (Homomorphic
Form) Capacity)

Encryption of m: ¢ = E(m) = v + n[m] (lattice ,

point + noise) Cryptotext

Decryption: D(c): D = B[B™c] Centroid

Homomorphism:
¢, + ¢; = (v + n[my]) + (v, + n[m;])
= 173 + n[m1 + mz]

Homomorphic
Addition



Base Lattice Problems (ex: SVP, CVP)

Shortest Vector Problem SVP, Closest Vector Problem CVP,
Given a lattice L(B), find a (honzero) lattice Given a lattice L(B) and a target point t,
vector Bx, x € Z* of length (at most) ||Bx|| < find a lattice vector Bx within distance

YA IBx —t]| < yu




Hard Problems in Lattice Cryptography
(Ring Learning with Errors)

Ring-LWE distribution: For an s € R, (the secret), the ring-LWE distribution 4; , over
R, X Ry is sampled by choosing a € R, uniformly at random, e « y, and outputting
(a,b=5s-a+emodq)

Decision-R-LWE: Given m independent samples (a;, b;) € R; X R; where every sample is
distributed according to either:

« A, forauniformly random s € R, (fixed for all samples),

* The uniform distribution

Distinguish which is the case (with non-negligible advantage)

Normal form: secret from s « y

More efficient than LWE (smaller m and FFT-like polynomial products)
Reduction of RLWE , , to quantum SVPB, [LPR10]



How to build Homomorphic Cryptosystems from Tlne msiaur

RLWE

Noise management is essential in homomorphic cryptosystems
® o

Non-fresh Encryption:
after homomorphic op.

Noise norm grows

after homomorphic Fresh Encryption
operations ;

Decryption Radius:

Coded message Homomorphic “capacity”

+ random noise

tuneinsight.com



How to build Homomorphic Cryptosystems from
R-LWE (Somewhat vs Fully HE)

¢ = Evals(pk, f,(¢1,...,cn)) = Enc(pk, f(ma,...,my))
Only valid when fis of depth < L

If Dec (squashed) has depth <L

Bstrs:(pk, [in]yx) = Evals(pk, Decs, [m]pr:)



RLWE cryptosystems

Common characteristics of modern RLWE cryptosystems:
* Cyclotomic polynomial f(x) = x™ + 1, n power of two
* Ciphertext modulus Q =[]g;
+ Ring Rq = Zo/ (f(x))
* Error distribution y with power ||x|| < B
* Plaintext modulus « Q, scale factor A
« Key generation:
« Secretkey.s <y
« Public key isan RLWE sample: E.g.,, (ap = —(a;s + e),a;), with a; « Ry, e « x
* Encryptions are vectors of polynomials in Ry, with the encoded message
« The decryption function is of the form
v

1 message noise
st
i=0

noise message

noise message



Efficiently using lattice cryptosystems: packing in
the coefficient domain

All the encryptions over RLWE work with polynomials of degree d
Each coefficient is a plaintext slot in Zy: a = a = Y- a;x*
SIMD homomorphic operations:

Polynomial addition
d—1

E(a) + E(b) = E Zax +E be —E(Z(al+b)xl)

Polynomial multiplication (modular polynomial f(x) =x%+1)

E(a)-E(b) =E dzl : be = z Z(a] l]) x* _djz dz_:l(aj'bdﬂ'—j)
i=0 \j=i+1

Nega-cyclic homomorphic convolution: E(¢’) = E(a’) - E(b")

After decryption:c = Y& ! ci’(—l)_éxi = ¢ =250 (Ehoo(ay - bioj))xt + DEF (291 (as -
bati-j))x’



Efficiently using lattice cryptosystems: packing in
the slot domain

Use an automorphism as message coding that switches domain
Equivalent to an NTT (Number Theoretic Transform) or DFT (Discrete Fourier Transform)
Ex. DFT (for inputs x, X € C%)

1 _J2mkn
DFT[x] = X, = an-e d

]21rkn
DFT-[X] = x,, = - ZXk e

Important properties:
« Circular convolution: DFT‘1[X Y] = 30 o X Vnoi + 28 n+1xlyd+n i =Xp ®

« Duality: DFT[x -yl = (Zl o Xi¥Yni + X n+1Xin+n—i) = EXk ® Y

. Parceval’stheorem.anoxnyn— a-lx.ve

E

Homomorphic operations become component-wise when the message is in the slot

domain
(coeffs-to- Encryption (component- Decryption (slots-to-
slots) wise) coeffs)



Function evaluation: polynomial approximations

Ring operations are additions and products

Non-polynomial functions have to be:
* approximated by a polynomial
« run on universal gates nand / xor with binary arithmetic

Let f(x):[a,b] € R = R, with ¢ € [a, b]
« Taylor approximation: Error bounded, but not uniform in [a, b]
Preferred when input distribution is denser around ¢ (e.g., Gaussian)

+ Least-squares approximation: minimizes average square error in [a, b]
Preferred when input is uniformly distributed and high homomorphic capacity

« Chebyshev approximation: Bounded maximum error, converges with $d$ to the
minimax polynomial that minimizes this maximum approximation error [a, b].
Preferred to avoid overflows and for numerical stability



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

Evaluation of a Logistic regression prediction
K
yi=ul| Bo+ Z a; jB;
j=1

For a dataset with [ records and k features



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

1. Parameterization and cryptosystem instantiation

from tuneinsight.cryptolib.hefloat import hefloat

# Parameterization: scale/precision and circuit depth

log_scale = 45 # Fixed-point arithmetic floating point scaling factor in bits (log2(Delta))

levels = 7 # Circuit depth

log_gi = [log_scale+5] + levels*[log_scale] # 5 additional bits for the lowest level, to account for plaintext growth

log_pi = [log_scale+5] # Auxiliary module used for relinearization (usually, at least of the same size as the lowest level g@)

# In order to generate an instance of the cryptosystem, the RLWE ring degree is automatically chosen to ensure at least 128-bit of security
# A context stores the scheme cryptographic parameters and a key generator
context = hefloat.new_context(log_qi = log_gi, log default_scale= log_scale, log pi = log_pi)

#Print some information about the cryptographic parameters
print(f‘Log2 N: {context.parameters.log n()}")

print(f'Log2 Moduli Chain: Q{log_gi} + P{log_pi}')

print(f‘Log2 QP: {context.parameters.log_q() + context.parameters.log_p()}")
print(f'Log2 Slots: {context.parameters.log_slots()}}')

print(f'Available Depth: {levels}')

Log2 N: 14

Log2 Moduli Chain: Q[5@, 45, 45, 45, 45, 45, 45, 45] + P[5@]
Log2 QP: 414,9999590083431

Log2 Slots: 13

Available Depth: 7



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

2. Key generation

# Generate a fresh secret key
sk = context.new_secret_key()

# Instantiate an evaluator with a relinearization key

# The relinearization key is at public-evaluation key required to ensure ciphertext x ciphertext compactness
# The resulting evaluator object contains only public information and can be freely shared

evaluator = context.new_evaluator(context.new_relinearization_key(sk))

3. Polynomial approximation of the activation function

import numpy.polynomial.chebyshev as chebyshev
import numpy as np

# Expected interval of the encrypted values after the scalar product
a = -12
b =12

# Interpolates the Sigmoid in the interval [-12, 12] and returns the coefficients
# for the Chebyshev approximation polynomial in the Chebyshev basis
coeffs = chebyshev.chebinterpolate(lambda x: 1/(1+np.exp(-((b-a)/2 * x + (b+a)/2))), 63)



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

4. Synthetic data generation

## Synthetic data generation:

# Number of samples to process in parallel (available plaintext slots that one encryption can hold)
batch_size = context.slots()

# Number of features (k=2080)
features = 200

# Generate random data in [-©.5, B8.5]. This is the matrix A’
data = np.random.rand{batch_size, features)-8.5

# Generate random regression weights in [@, 1]. These represent beta_i, i=1,...,k
weights = np.random.rand(features, 1)

# Generate random bias (intercept coefficient) in [@, 1]. This represents beta_8
bias = np.random.rand(1)



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python

cryptolib
5. Packed encryption of all inputs
Option 1: horizontal packing
intercept k columns
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Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python

cryptolib

5. Packed encryption of all inputs

Option 2: vertical packing
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Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

5. Packed (batched) encryption of all inputs

# This optional parameter defines whether the input vectors will be encoded in the coefficients domain (if batched=False)

# or in the slots domain (if batched=True). The latter is the default behavior, and it enables component-wise homomorphic operations
# (additions and products)

batched = True

# The encrypt function can receive a two-dimensional matrix as input, in which case it encrypts each row of the input matrix in one ciphertext.
# Therefore, we transpose the input A", in order to encrypt each column of A" in one ciphertext.

# We need to explicitly make a copy to ensure a correct memory

# alignment when passing C pointers of arrays to the Go wrapper.

# The function returns an object that stores a vector of ciphertexts.

encrypted_data = context.encrypt(data.transpose().copy(), sk, batched)

# As for the regression coefficients, we encrypt each of the weights replicated in all slots of the corresponding ciphertext.

# For this, we apply repetition coding (with tile) and pass the resulting matrix as input to the encrypt function, so that each row is encrypted in a separate ciphertext.
# The result is an object that stores a vector of ciphertexts, each containing one regression coefficient replicated in all its slots.

encrypted_weights = context.encrypt(np.tile(weights, (1, batch_size))* 2/(b-a), sk, batched)

# The intercept coefficient or bias is also encrypted in its own ciphertext, with the same repetition coding as all the other regression coefficients
encrypted_bias = context.encrypt(np.tile(bias, (1, batch_size))* 2/(b-a) + (-a-b)/(b-a), sk, batched)



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

6. Homomorphic evaluation of the model prediction under encryption

# Encrypted evaluation of data @ weights computed as np.sum(data.transpose() * np.tile(bias, (1, batch_size)), axis=8)
# This is faster, but equivalent, to doing evaluator.sum(evaluator.mul(encrypted_data, encrypted_weights), axis=8)
encrypted_scalar_product = evaluator.scalar_product({encrypted_data, encrypted_weights)

# Encrypted evaluation of data @ weights + bias

encrypted_scalar_product_plus _bias = evaluator.add(encrypted bias, encrypted scalar_product)

# Encrypted evaluation of sigmoid(data @ weights + bias)
encrypted_prediction = evaluator.polynomial{encrypted_scalar_product_plus_bias, coeffs=coeffs, basis="Chebyshev")



Practical example: evaluating a Logistic regression
under encryption with Tune Insight’s Python
cryptolib

7. Decryption of results

# Decrypts the values
prediction = context.decrypt(encrypted prediction, sk)[:, :batch_size]

8. Accuracy comparison with the clear-text process

from math import log
# Finally, we evaluate the plaintext circuit
clear_target = 1/(np.exp(-(data @ weights + bias))+1)

# And compare with the decrypted result
print(f'Obtained: {prediction}')
print(f Clear tg: {clear_target.transpose()}’)

print(f'Precision as -log2(avg_l2(obtained-clear_tg))): {-log(np.sgrt(np.sum{(predictien-clear_target.transpose())**2))/batch_size, 2)}

Obtained: [[©.87919843 ©.17177785 0.22382661 ... 0.99488169 0.06266606 0.45500863]]
Clear_tg: [[0.87919843 0.17177785 ©.22382656 ... 0.99488167 0.06266607 0.45500862]] Precision as -log2(avg_l2(obtained-clear_tg))):

31.818855691640856

)



Recap on Homomorphic Encryption

ab N achbh
compute (o)

encrypt :
encrypt i P 1. Put your gold in a locked box.

2. Keep the key.
3. Let your jeweler work on it through a glove box.

E(a),E(h)) ————> E(a)xE(b)=E(a°b) | 4 Unlockthe box when the jeweler is done!
Compute (%)

Figure from Prof. Kristin Lauter (“Private Al: Machine Learning on Encrypted Data”, 2021)

Homomorphic encryption enables computations directly on encrypted data:
“compute on the data without seeing the data”

..but what happens if the raw data cannot be moved or centralized?



Data collaborations: Centralized approach

e Single point of failure at
the central database

¢ Individual sites lose
control over their data

e Not always feasible

@ across jurisdictions

i
® b
OO
((



Data collaborations: Federated Learning

Requires trust on the aggregation
server

Vulnerable to re-identification and
reconstruction attacks

B. Hitaj, C. Ateniese, and F. Perez-Cruz. Deep models under the
GAN: Information leakage from collaborative deep learning. In
ACM CCS, 2017.

Z.Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi. Beyond
inferring class representatives: User-level privacy leakage from
federated learning. In IEEE INFOCOM, 2019.

L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. In NIPS.
2019.

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In IEEE
S&P, 2019.

M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy
analysis of deep learning: Passive and active white-box
inference attacks against centralized and federated learning. In
IEEE S&P, 2019.



Secure Multiparty Computation (SMC)

Problem statement:

A set of players P = {P;, P,, ..., Py} would like to compute a function
f(xq,x2, ..., xy) = (¥1, V2, -.., Yn) of their joint inputs.

Requirements:

1. Privacy
No party should learn anything more than its prescribed

output

2. Correctness
Each party is guaranteed that the output that it receives

is correct

Realization:

An (interactive) multiparty cryptographic protocol

X5 Ys

X4 Ya

X3 Y3



MHE (Multiparty Homomorphic Encryption)

Combination of;

HE

encrypted ___, Securityand

computation Privacy
SMC . Tfust )
collective key Distribution
FL Data

Iterative local & —
collective training

Minimization

v Policy enforcement embedded in
the protocol

v Raw data does not move

v Computation is encrypted end-to-
end
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Data collaborations: Secure and distributed approach Tl nsicur

Organization
security perimeter

e Minimization of transfers

e Always aggregated &
encrypted data

e Computation over
encrypted data

e Controlled computation

***  Tune Insight Encrypted Local Partial ..+, Aggregated
sees  Applications & Data ol Results el Collective Insights

tuneinsight.com



Practical example: training mortality models on D,
dataset with federated data using Tune Insight’s
platform and Python SDK

Comparison of three scenarios

Federated Learning Encrypted Federated Learning
______________________________ Ow
i Local Training | LocaITralnlng zz:i:;izm
! ! . Aggregation
: .%:\\ ' Aggregation B ‘/’\ ﬁ
e B <

Hybrid Federated Learning

Federated
Confidential
Aggregation

| Local Training

B -
D

! ! Differential
fommmmmmm e ! Privacy Noise

%




Practical example: training mortality models on D,
dataset with federated data using Tune Insight’s

platform and Python SDK

1. Model parameter definition (Cox and Logistic Regression)

task_id cox = 'mortality cox’
task def cox =
"n_inputs": 11,
"n_classes™: 2,
"model": |
"type": "cox",
"pretrained”: False,

"shuffle data™: True,

"balance _train_classes": True,
"batch_size": 2848,

"drop_last batch": True,

"loss_criteria”: "cross_entropy_loss”

task_id logreg = 'mortality logreg'
task_def logreg = {
"n_inputs”: 11,
"n_classes": 2,
"model": {
"type": "logreg”,
"pretrained”: False,

"shuffle data™: True,

"balance train_classes": True,
"batch _size"™: 2848,

"drop_last batch": True,
"loss_criteria™: "cross_entropy_loss”



Practical example: training mortality models on D,
dataset with federated data using Tune Insight’s
platform and Python SDK

Secure Federated Learning workflow: Training parameters

learning_params_federated_secure = models.HybridFLLearningParams(
fl1_rounds = 2,
local_epochs = 1,
num_workers = 8,
batch_size = 2848,
learning rate = 8.81,
momentum = .9,
gradient_clipping = 8.1,
epsilon = 1,
delta = ©8.881,

Running the computation

hybrid_fl1 = project.new_hybrid_f1()
hybrid _fl.max_timeout = 388 * 68 * time.second
_ = hybrid_fl.create_from_params(task_id=task _id cox, learning_params=learning_params_federated secure, task_def=task_def cox)



Practical example: training mortality models on D, Tlne msiaur
dataset with federated data using Tune Insight’s
platform and Python SDK

Training performance

Cox Regression Logistic Regression
| W o :

10
—— Nalidation

a8

08

|
\

AUROC

AURDE

04

00

Epochs 1
12 sec.
Epochs 2
12 sec,
Epochs 1
11 sec.
Epochs 2
11 sec.

regation: 0 sec. {0.735)
gation: 0 sec. (0.768)

res

Aggregation: 0 sec. (0.619)
Aggregation: 0 sec. (0.679)

Cox regression  Logistic regression

Federated 0.916500 0.904500

tuneinsight.com



Legal analysis - GDPR Compliance

“Technical solutions such as multiparty homomorphic encryption (MHE) that
combine these three technical measures while still allowing for the possibility to
query and analyse encrypted data without decrypting it have significant
potential to provide effective security measures that facilitate cross-borders

transfers of personal data in high-risk settings.”

Compagnucci et al., Supplementary Measures and Appropriate Safeguards for International Transfers of Personal
Data after Schrems Il (February 23, 2022). https://ssrn.com/abstract=4042000

Contact us for a full analysis of the platform benefits and risk minimization,
addressing the relevant GDPR recitals.

Article 25 Article 32 Article 33
Data protection by design NPT Breach notification to

and by default Sl e PlieEsEllg supervisory authority
Data Protection

Benefits

of Tune Insight’s solution

Article 34 Article 35 Article 46
Breach communication to the Data protection impact Transfers subject to
data subject assessment appropriate safeguards



https://ssrn.com/abstract=4042000
https://gdpr-info.eu/art-25-gdpr/
https://gdpr-info.eu/art-32-gdpr/
https://gdpr-info.eu/art-33-gdpr/
https://gdpr-info.eu/art-34-gdpr/
https://gdpr-info.eu/art-35-gdpr/
https://gdpr-info.eu/art-46-gdpr/

Other applications of secure federated analytics

Hospitals & Insurance & Re-
Pharma Insurance
Collective survival Train collective risk
analysis in oncology models
Lab reference data Cross-vertical

collaboration (Value-

Train image classifiers Based Healthcare)

in dermatology

_\|_| Universitatsspital
“l |Basel

Usz  groupe

MINSELSPITAL

+ others + others

Cyber
Security

Cross-organization
alert enrichment

Collective threat
intelligence models

Private search of
loCs/alerts

O

+ others

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

armasuisse
Science and Technology

Financial
Services

Collaborative
analytics

Sensitive data
pooling, AML-CFT

Participated in the Tech Sprint organized by ACPR
on Confidential Data Pooling for AML-CFT in 2022

Confidential Collaborative Analytics and Machine Learning




With Tune Insight, organizations can collaborate
on their most sensitive cybersecurity data to
collectively better defend against cyber attacks

Managed
Security Service
Provider

Provider's
Customer A

Provider's
Customer B

Example Cybersecurity

Connecting the dots between
events across customers happens in
the analyst's head

With Tune Insight, MSSPs can
automate collective alerts
enrichment across customers to
reduce false positives and save time

Developed frontend and backend
integrations

tching Enrichment results




Cyber: Integration with existing platforms and dashboards
Use case: enriching alerts with data from multiple parties,
integrated in the organization’s existing tools and workflows

kibana_sample_data_logs \/ « ¢= 5 hits
Filter by type 0 v
 Available fields 20
d sorted
““““““““ »

Customer Retention Over Time
6

82% 15

; -
Avg Review Score I I II I e ’
4.3 102 I = n I M A I

N




Based on the same core technology, we address

similar problems in other verticals

Example Healthcare

Pharma A

a
o
-
Hospital B ﬁ “
.
Clinic C
a

Relying only on their own data,
hospitals and clinics lack
representative datasets to provide
personalized care

With Tune Insight, they can
collaborate with others to
recommend precision treatments
without moving or disclosing any
raw patient data, and include private
players in the collaboration

Developed frontend and backend
integrations

¢ Survival Analysis

Survival Analysis results

last updated S seconds ago

Collective result

T
%

Al High Tobacco Consumption [ll  Low Tobacco Consumption [l With BRAF

putation of these results was made possible by Tune Insight's Federated Confidential Computing



Collaborations in Financial Services

Challenges in Fraud Detection and
AML2

e /solated view
° Data interoperability
e Data protection and privacy

WORLD “PETs can fundamentally
ECONOMICchange the nature of
FORUM data sharing in financial
services, creating new
value for customers and addressing
institutions' most pressing problems
in a way that is acceptable to
customers, regulators, and society at
large.”
WEF. September 2019

1https://vvwvv.weforu m.org/whitepapers/the-
next-generation-of-data-sharing-in-financial-
services-using-privacy-enhancing-
technigues-to-unlock-new-value/

Isolated view
o = o
\ /}G\ P4
®\ "
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|
o e ¥ —
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@

Traditional Siloed Rule-Based

e  Traditional rule-based
systems can result in high
false-positives and false-
negatives (90%-95% of the
generated alerts are FP)2

e ML not fully effective when
data from multiple sources is
not available (siloed views)

2

https://www.bis.org/about/bisih/topics/fmis/aurora.ntm

With collaborative analysis and learning (CAL) arrangements.

DS
N > SR
ST e W
/@\ o4 ‘ ;@/ o
,/@\"@\\ | @
®"""~*————3@-/@

Collaborative Analysis and Learning

Cross-border ML monitoring
can reduce FPs 75% vs rule-
based siloed.2

PET-enabled CAL with
machine learning-based
network analysis appears to
reduce the number of FPs by
up to 80% compared with the
siloed rule-based method.


https://www.bis.org/about/bisih/topics/fmis/aurora.htm
https://www.weforum.org/whitepapers/the-next-generation-of-data-sharing-in-financial-services-using-privacy-enhancing-techniques-to-unlock-new-value/

Based on the same core technology, we address
similar problems in other verticals

Example Financial Sector
Bank A a

2 Problem:
Customer data cannot be shared
Effective fraud detection requires
collaborations

Bank B e “ Solution:

s Blacklist matching and
training of fraud models
without moving or disclosing
customer data

Bank C a

U collective Blacklist Search

BEDS416941631736997173182998 ey

* The IBAN you search for is not disclosed to the other participating |
« If there is a match, its source is hidden

* Your blacklist never leaves your security perimeter

* Your blacklist is never revealed to other participating banks

This IBAN was found
in the collective blacklist.



Collective statistics and time-series information
about suspicious account activity

Collective IBAN Usage Monitoring using Private Search

In this notebook, we showcase Tune Insight's Collective Private Search through a simple use case: A group of three independent financial
institutions hold databases of transactions and analysts want to query the usage of specific IBANs over a period of time across all financial
institutions.

In practice, responding to such query would require the institutions to share or centralize their transactional data and view the query from
the user, affecting confidentiality and privacy across stakeholders.

Using our Collective Private Search distributed computation, the analyst's query can effectively be treated while ensuring:

¢ The transactions databases are not shared across institutions.
e The analyst's query is not visible to any of the institutions.

These guarantees are made possible through the use of a Private Information Retrieval (PIR) protocol, a cryptographic primitive that allows a
user to retrieve information from a server without revealing which information they are retrieving. The PIR protocol is implemented securely
using homomorphic encryption.

# Valid Query

searched_iban = "AT631626621525632941972264859661"
result = private_search.query(searched_iban)
display(result)
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1 rows = 29 columns

The results can then be plotted using the library or used in further processing.

2023-

2

2023-

6

2023- 2023- 2023- 2023- 2
01-20 01-21 01-22 01-23 01-24 01-25 C

2

3 4 12

private_search.plot_result(result,'{searched_iban} transaction count’, x_label='time', y_label='transactions’,t:

ATB31626621525632941972264859661 transaction count

transactions
[

0= ' ' ' '
2023-01-01 2023-01-05 2023-01-09 2023-01-13 2023-01-17

time

as made possible by Tune Insight's F

2023-01-21

onfidentia

2023-01-25

Computing.

2023-01-29



Product Overview: Tune Insight Software Module
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IT Security Assessment
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Diagram 1: Number of vulnerabilities in your web grouped by risk levels



Use case for SPO: Federated analytics platform
for research and molecular tumor board

Q1: How many adult cancer
routine data for research
on or after Ist January 2015,

mutations in BRAF gene and
under anti-PD-1 are there?
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BRAF gene?
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Privacy-Preserving Federated Analytics for
Precision Medicine

Overall Survival
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D. Froelicher, J.R. Troncoso-Pastoriza, et al. “Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic
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Privacy-Preserving Single-Cell Analysis

System Model
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Use case for Swiss BioRef: real-time personalized
lab reference ranges

Q1 What is the reference
range for Creatinine (LOINC:

14682-9) for 50y-old male and
heart failure?
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Secure Federated Training of Deep Neural

Networks on Dermatology Images with
combination of HE, MPC, FL, and DP

- ¥ o 4 epochs Local training Secure federated

" R Ea——— S baseline training

- Nodes 1 node with 10909 3 nodes (~3635

- samples samples each)

E //J Training accuracy 72.16% 77.65%

— Training Fl-score 0.279431 0.604438

. == Validation accuracy | 7213% 78.88%
,/ Validation Fl-score 0.279364 0.564171

Epoch1 Epoch 2 Epoch 3 Epoch 4 Privacy params N/A =10, 6 =0.0001
. . . i ~ o i
Dataset: Fitzpatrickl7k, ~30k images Time overhead 0 10% (w.r.t. vanilla FL)
(https://github.com/mattgroh/fitzpatrickl17k)

Model:
Type: ViT with 4-layers embedding
Size: 5,528,259 parameters, 44.3MB

100 seconds/epoch on a g4dn.2xlarge AWS EC2 instance with a

Nvidia T4 GPU (16GB memory)
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